
BOHR International Journal of Computer Science
2022, Vol. 1, No. 1, pp. 31–36

https://doi.org/10.54646/bijcs.005
www.bohrpub.com

Hindi/Bengali Sentiment Analysis using Transfer Learning and
Joint Dual Input Learning with Self Attention
Shahrukh Khan and Mahnoor Shahid

E-mail: shkh00001@stud.uni-saarland.de; mash00001@stud.uni-saarland.de

Abstract. Sentiment Analysis typically refers to using natural language processing, text analysis, and computa-
tional linguistics to extract effect and emotion-based information from text data. Our work explores how we can
effectively use deep neural networks in transfer learning and joint dual input learning settings to effectively classify
sentiments and detect hate speech in Hindi and Bengali data. We start by training Word2Vec word embeddings for
Hindi HASOC dataset and Bengali hate speech [1] and then train LSTM and subsequently, employ parameter shar-
ing based transfer learning to Bengali sentiment classifiers by reusing and fine-tuning the trained weights of Hindi
classifiers with both classifiers being used as the baseline in our study. Finally, we use BiLSTM with self-attention
in a joint dual input learning setting where we train a single neural network on the Hindi and Bengali datasets
simultaneously using their respective embeddings.

Keywords: Deep Learning, Transfer Learning, LSTMs, Sentiment Analysis, Opinion Mining.

INTRODUCTION

There have been certain huge breakthroughs in the
field of Natural Language Processing paradigm with the
advent of attention mechanism and its use in trans-
former sequence-sequence models [2] coupled with dif-
ferent transfer learning techniques have quickly become
state-of-the-art in multiple pervasive Natural Language
Processing tasks such as classification, named entity
recognition etc [3, 4]. In our work we propose, a
novel self-attention-based architecture for sentiment anal-
ysis and classification on Hindi HASOC dataset [1]
here we use sub-task A which deals with whether a
given tweet has hate speech or not. Moreover, this
also serves as a source domain in the subsequent
task-specific transfer learning task, where, we take the
learned knowledge from the Hindi sentiment analysis
domain to a similar binary Bengali sentiment analysis
task.

Given the similar nature of both Bengali and Hindi
sentiment analysis tasks (i.e., binary classification), we
conceptualized the problem as joint dual input learning
setting on top of the work of Zhouhan Lin et al. [5] where
they suggested how we can integrate self-attention with
BiLSTMs and have a hidden representation containing dif-
ferent aspects for each sequence which results in sentence
embeddings whilst performing sentiment analysis and text

classification more broadly. One significant beneficial side
effect of using such an approach is that the attention
attributions can easily be visualized which implies we can
see what portions of the sequence attention mechanism
have put more impetus on via its generated summation
weights, this visualization technique played a pivotal role
in selecting the number of attention hops r also referred to
as how many attention vectors of summation weights for
each sequence in our study. Moreover, we employed this
approach in a joint dual input learning setting where we
have a single neural network that is trained on Hindi and
Bengali data simultaneously.

Our proposed approach which is a variant of the multi-
task learning offers an alternative framework for training
text classification based neural networks on low resource
corpora. Also, since we train a single joint network on mul-
tiple tasks simultaneously, it essentially allows for better
generalization and task specific weight-sharing which can
be a reasonable alternative for pre-training based transfer
learning approaches.

EXPERIMENTAL SETTING

Word Embeddings

Starting with the Hindi dataset, we prepared the train-
ing dataset in which employed sub-sampling technique in

31

https://doi.org/10.54646/bijcs.005
https://www.bohrpub.com
https://creativecommons.org/licenses/by/4.0/


32 Shahrukh Khan and Mahnoor Shahid

Figure 1. Train loss convergence for different values of window
size with fixed embedded size = 300 Hindi Dataset.

which we first computed the probability of keeping the
word using the following formula:

Pkeep(wi) =

(√
z(wi)

0.000001
+ 1

)
× 0.000001

z(wi)

Where z(wi) is the relative frequency of the word in the
corpus. Hence we used Pkeep(wi) for each context word
while sampling context words for a given word and ran-
domly dropped frequent context words by comparing
them against a random threshold sampled each time from
a uniform distribution, since if we kept all the frequent
words in our context for training data, we may not get
the rich semantic relationship between the domain-specific
words since frequent words like “the”, “me” etc don’t nec-
essarily carry much semantic meaning in a given sequence.
Hence dropping randomly dropping them made more
sense as compared to keeping or dropping all of them.
Also, another important design decision that we made here
was to curate the train set for Word2Vec only once before
training the model as opposed to creating a different one
for each epoch as we were randomly sub-sampling context
words because the earlier mentioned approach gives faster
execution time for training the model while the model
also converged well to a relatively low train loss value as
well. Furthermore, for choosing hyper-parameters we per-
formed the following analysis.

As it is apparent from the above visualization WordVec
models with smaller context windows converged faster
and had better train loss at the end of the training process.
However, in order to retain some context-based informa-
tion we selected the window size 2 as it has contextual
information as well the model had better train loss.

After testing different values for hyper-parameters with
different combinations, this was observed that for the
better performance of the model, they should be set to

Table 1. Different combinations of hyperparameters from Hindi
Dataset.

Embedded Size Learning Rate Window Size Min Loss Score

300

0.05

1 0.841
2 1.559
3 1.942
4 2.151
5 2.321
10 2.792

0.01
1 1.298
2 3.295
10 2.747

0.1
1 1.311
2 1.557
10 3.551

Epochs = 500, Window Size = 2, Embedded Size = 300,
and Learning Rate = 0.05 in the case of our study.

Also, we have set Cross Entropy Loss as the crite-
rion used for adjusting the weights during the training
phase. When softmax converts logits into probabilities
then, Cross-Entropy takes those output probabilities (p)
and measures the distance from the truth values to estimate
the loss. Cross entropy loss inherently combines log soft-
max and negative log-likelihood loss so we didn’t apply
log softmax on the output of our Word2Vec model.

For optimization, we have selected Adam (Adaptive
Moment Estimation algorithm) [6] which is an optimiza-
tion technique that, at present, is very much recommended
for its computational efficiency, low memory require-
ment, invariant to diagonal rescale of the gradients, and
extremely better results for problems that are large in terms
of data/parameters or for problems with sparse gradients.
Adam provides us with the combination of best properties
from both AdaGrad and RMSProp and is often used as an
alternative for SGD + Nesterov Momentum as proposed by
adam [6].

Baseline Models

For the choice of baseline, we reproduced the work by
Jenq-Haur Wang et al. [7] which primarily focuses on per-
forming sentiment classification on short social media texts
using long short-term memory neural networks using dis-
tributed representations of Word2Vec learned using Skip-
gram approach. We chose to reproduce their work for
our baseline as they also were using Word2Vec Skip-gram
based distributed representation of words and also since
our datasets were also sourced from social media. More-
over, the neural network LSTM is an upgraded variant of
the RNN model, that serves as the remedy to some extent
of the problems that require learning long-term tempo-
ral dependencies; due to vanishing gradients, since LSTM
uses a gate mechanism and memory cell to control the
memorizing process.



Hindi/Bengali Sentiment Analysis using Transfer Learning and Joint Dual Input Learning with Self Attention 33

Hindi Neural Sentiment Classifier Baseline

We then implemented the architecture for the LSTM
classifier which used pre-trained 300-dimensional word
embeddings obtained as described in section “Word
Embeddings”. We used the Adam optimizer with the ini-
tial learning rate of 10−4 which helped the train and
validation loss to converge at a relatively fast rate, the
optimizer didn’t optimize the weights of the embedding
layer via gradient optimization since they were pre-trained
already. Moreover, we chose the binary cross-entropy loss
function as we are doing binary classification. In model
architecture, we used 8 layers of LSTMs with each hav-
ing a hidden dimension of 64 followed by a dropout layer
with a dropout probability of 0.5 to counterbalance over
fitting and finally fully connected output layer wrapped
by a sigmoid activation function since our target is binary
and sigmoid is the ideal choice for binary classification
given its mathematical properties. We kept a batch size
of 32 and trained the model for 30 epochs while monitor-
ing its accuracy and loss on the validation set. The choice
of hyper-parameters was made after trying different com-
binations and we chose the best set of hyper-parameters
while monitoring the validation set accuracy.

Bengali Neural Transfer Learning Based Sentiment
Classifier Baseline

Similarly to the Hindi sentiment classification pipeline, we
first obtained the word embeddings for Bengali data using
the Word2Vec skip-gram approach, the same set of hyper-
parameters that we chose for the Hindi dataset, worked
fine here well, so we didn’t tune the hyper-parameters
here, as the model’s train loss converged to the similar
value we had for the Hindi dataset. Subsequently, we then
same the architecture for LSTM based classifier architec-
ture as explained in section “Hindi Neural Sentiment Clas-
sifier Baseline”. Since our goal here was to perform transfer
learning and re-use and fine-tune the learned weights
of the Hindi classifier. We replaced the Hindi embed-
dings layer with a Bengali 300 dimensional embedding
layer and also didn’t optimize its weights during train-
ing. Then loaded the weights from the Hindi classifier for
LSTM layers and fully connected layer to apply parameter
sharing-based task-specific transfer learning. Additionally,
we trained the Bengali classifier for 30 epochs with a batch
size of 32 and used the Adam optimizer with an initial
learning rate of 10−4 while using the binary cross-entropy
function for computing loss on the training and validation
set. The choice of batch size hyper-parameter was made
after trying different values and we chose the best hyper-
parameter while monitoring the validation set accuracy.
After training the classifier using the pre-trained weights
from the Hindi classifier, we got better performance results
than the Hindi baseline, this implies task-based transfer
learning actually boosted the performance of the Bengali
classifier and it performed better.

PROPOSED METHOD

The LSTM based classifier coupled with transfer learning
in the Bengali domain does a fairly good job of providing
the baselines in our study. However, one main prominent
short-coming of Recurrent Neural Network based architec-
tures is they fall short to capture the dependencies between
words that are too distant from each other. LSTM’s forget
gate enables it to retain information about the histori-
cal words in the sequence however, it doesn’t completely
resolve the RNN based networks’ vanishing gradients
problem. We wanted to investigate whether using self-
attention with LSTMs would improve our model’s per-
formance. Also, we propose the joint dual input learning
setting where both Hindi and Bengali classification tasks
can benefit from each other rather than the transfer learn-
ing setting where only the target task takes the advantage
of pre-training.

Hindi & Bengali Self Attention Based Joint
Dual Input Learning BiLSTM Classifier
Instead of training two separate neural networks for Hindi
& Bengali, here we simultaneously trained a joint neural
network with the same architecture on Hindi and Ben-
gali data in parallel, and optimized its weights using the
combined binary cross-entropy loss over Hindi & Bengali
datasets respectively, we also added the Hindi and Bengali
batches’ attention loss to the joint loss in order to avoid
overfitting, which we would present in detail in the subse-
quent sections. Here we switched between the embedding
layers based on the language of the batch data. Following
is the block architecture we propose.

One major benefit of using such technique is that it
increases the model capability of generalization since the
size of the training data set roughly doubles given if both
languages have an equal number of training examples.
Consequently, it reduces the risk of over-fitting.

We propose an extension of the work of [5] where they
proposed the method of “A Structured Self-attentive Sen-
tence Embedding” on the Hindi dataset. The key idea
of that work was to propose document level embeddings
by connecting the self-attention mechanism right after a
Bi-directional LSTM, which leverages information of both
past and future in the sequence as opposed to unidirec-
tional LSTM which only relies on past information in the
sequence. The self-attention mechanism results in a matrix
of attention vectors which are then used to produce sen-
tence embeddings, each of them equivalent to the length
of the sequence and the number of vectors depend on
the value of r which is the output dimension of the self-
attention mechanism, where each vector is representing
how attention mechanism is putting more relative weight
on different tokens in the sequence. Following are the key
takeaways on how self-attentive document embeddings
are produced:



34 Shahrukh Khan and Mahnoor Shahid

Figure 2. Hindi Bengali Joint Dual Input Learning Architecture.

We start with a input text T of (n, d) dimension, where
n are the number of tokens, each token is represented by
its embedding e in the sequence and d is the embedding
dimension.

Thindi = [e1, e2, e3, . . . , en]

Tbengali = [e1, e2, e3, . . . , en]

Based on the source language of the input text the corre-
sponding embedding lookup is performed.

Token embeddings are then fed into the BiLSTM, which
individually processes each token from left to right and left
to the right direction, each BiLSTM cell/layer producing
two vectors of hidden states equivalent to the length of the
sequence.

[[
−→
h1 ,
−→
h2 , . . . ,

−→
hn ], [

←−
h1 ,
←−
h2 , . . . ,

←−
hn ]]

= BiLSTM([e1, e2, . . . , en]; θ)

Here H is the concatenated form of bi-directional hidden
states. If there are l LSTM layers/cells then the dimension
of H is going to be (n, 2l).

H = [[
−→
h1 ,
−→
h2 , . . . ,

−→
hn ], [

←−
h1 ,
←−
h2 , . . . ,

←−
hn ]]

For self-attention, Zhouhan Lin et al. [5] proposed
having two weight matrices, namely Ws1 with dimen-
sion (da, 2l) and Ws2 with dimension (r, da), here da is
the hidden dimension of self-attention mechanism and as
described earlier r is the number of attention vectors for
given text input and then we apply following set of opera-
tions to produce the attention matrix for input text T.

Ha = tanh(Ws1 HT)

Here Ha has dimensions (da, n)

A = so f tmax(Ws2 Ha)

Finally, we compute sentence/document level embeddings

M = AH

A has dimensions (r, n) and M has dimensions (r, 2l) also,
earlier the softmax applied along the second dimension of
A normalizes attention weights so they sum up 1 for each
attention vector of length n.

Zhouhan Lin et al. [5] also proposed penalization term
in place of regularization to counterbalance redundancy in
embedding matrix M when attention mechanism results in
the same summation weights for all r hops, additionally,
We initially started by setting this penalization term to 0.0
however, as self-attention generally works well for finding
long term dependencies the neural network started to over-
fit after few epochs of training on train data. We started
with the same hyper-parameters setting of self-attention
block as described by Zhouhan Lin et al. [5] while setting
r = 30 however, we started with no penalization to start
with and found the best values for them while monitoring
the validation set accuracy which is a hidden dimension of
300 for self-attention, with 8 layers of BiLSTM with a hid-
den dimension of 32 and also, the output of self-attention
mechanism (sentence embeddings M) goes into a fully con-
nected layer with its hidden dimension set to 2000, finally
we feed the fully connected layer’s results to output layer
wrapped with sigmoid activation. The choice of the loss
function, learning rate, and optimizer remain unchanged
from the baseline, the number of epochs are 20 here. After
training the model with hyperparameters suggested in the
above text, we observed the model started to overfit on
train data after a few epochs and almost achieved 99% train
accuracy and loss less than 0.5 average epoch train loss, in
order to add the remedy for this we visually inspected the
few of the examples from the test set in attention matrix
with confidence >0.90 and observed for longer sequences
the attention mechanism worked as expected, however, as
the sequence length decreased the attention mechanism
started producing roughly equal summation weights on all
r hops which intuitively makes sense in short sequences
all tokens would carry more semantic information, how-
ever, this result in redundancy in attention matrix A and
in embedding matrix M. Below we present some of the
examples from the Hindi test set, also since showing all the
vectors would make it redundant so we only present 5 vec-
tors for a given sequence even though we had r set to 30
which implies we had 30 vectors for each sequence.

Also, we performed the same analysis as we performed
for Bengali data. Following we would also show few simi-
lar examples as we showed for Hindi sequences.

In order to counterbalance this redundancy, we started
increasing the value of the penalization coefficient of the
attention mechanism in order to reduce the redundancy
among the attention matrix and found penalization coef-
ficient of 0.6 produced the best validation set accuracy,
similarly, the other form of diagnosis we performed was to



Hindi/Bengali Sentiment Analysis using Transfer Learning and Joint Dual Input Learning with Self Attention 35

Figure 3. Attention vectors for a relatively longer Hindi sequence.

Figure 4. Attention vectors for a relatively medium Hindi
sequence.

Figure 5. Attention vectors for a short Hindi sequence.

Figure 6. Attention vectors for a short Bengali sequence.

actually reduce the number of attention hops, i.e., varying
the hyper-parameter r and observed network with r = 20
had better performance on validation, alongside setting the
hidden size of attention mechanism to 150 set as compared

Figure 7. Attention vectors for a short Bengali sequence.

Table 2. Results of evaluating the binary neural Hindi and Bengali
sentiment classifiers on their respective test sets.

Model Accuracy Precision Recall F-1 Score
LSTM-Hindi 0.74 0.74 0.74 0.74
LSTM-Bengali + Pret 0.77 0.77 0.77 0.77
SA + JDIL (Hindi) 0.76 0.76 0.76 0.76
SA + JDIL (Bengali) 0.78 0.78 0.78 0.78

to r = 30 and hidden size = 200 as suggested in the orig-
inal work. Also, in order to avoid any over-fitting during
the BiLSTM block, we used dropout in BiLSTM layers with
a value of p = 0.5.

RESULTS

LSTM Bengali + Pret in Table 2 refers to the model which
shares task-specific pre-trained weights from LSTM Hindi
classifier. SA + JDIL is our method which uses self-
attention with joint dual input learning to train a joint
neural network. Results in Table 2 empirically show that
joint-learning can benefit both the pre-training task per-
formance as well the downstream task due to the joint
training procedure. Moreover, since the pre-training model
LSTM Hindi has to perform training starting with ran-
domly initialized weights, it is not possible in that setting
for the pre-training network to benefit from downstream
task, however, our proposed approach make this possible
which results in meaningful performance gain for the pre-
training task on the performance metrics.

CONCLUSION

In our study we investigate whether self-attention can
enhance significantly the performance over uni-directional
LSTM in the binary classification task setting, moreover,
we also investigated when the tasks are the same in
our case binary classification in Hindi and Bengali lan-
guage, whether how do transfer learning and joint dual
input learning setting perform. Firstly we found when the
lengths of sequences are not that long LSTMs can perform
almost as well as using self-attention since there are no very
distant dependencies in sequences in most of the cases.
Secondly, we observed that transfer learning in case sim-
ilar or same tasks can be a beneficial way of increasing the



36 Shahrukh Khan and Mahnoor Shahid

performance of the target task which in our case was Ben-
gali binary classification. However, by introducing the joint
learning setting where we trained a single network for both
tasks the Hindi classification task that was the source task
in the transfer learning setting, also got benefited in the
joint learning setting as its performance improved. More-
over, such architecture provides an implicit mechanism to
avoid overfitting as it roughly doubled the dataset size
when we trained a single network.

REFERENCES

[1] Thomas Mandla, Sandip Modha, Gautam Kishore Shahi, Amit Kumar
Jaiswal, Durgesh Nandini, Daksh Patel, Prasenjit Majumder, and
Johannes Schäfer. Overview of the hasoc track at fire 2020: Hate
speech and offensive content identification in indo-european lan-
guages, 2021. 1.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need, 2017. 1.

[3] Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan
Sangeetha. Ammus: A survey of transformer-based pretrained mod-
els in natural language processing, 2021. 1

[4] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient
transformers: A survey, 2020. 1.

[5] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing
Xiang, Bowen Zhou, and Yoshua Bengio. A structured self-attentive
sentence embedding, 2017. 1, 3, 4.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017. 2.

[7] Jenq-Haur Wang, Ting-Wei Liu, Xiong Luo, and Long Wang. An
LSTM approach to short text sentiment classification with word
embeddings. In Proceedings of the 30th Conference on Computational
Linguistics and Speech Processing (ROCLING 2018), pages 214–223,
Hsinchu, Taiwan, October 2018. The Association for Computational
Linguistics and Chinese Language Processing (ACLCLP). 2.


	Introduction
	Experimental Setting
	Word Embeddings
	Baseline Models
	Hindi Neural Sentiment Classifier Baseline
	Bengali Neural Transfer Learning Based Sentiment Classifier Baseline
	Proposed Method
	Hindi & Bengali Self Attention Based Joint Dual Input Learning BiLSTM Classifier



	Results


	Conclusion


