© BOHR

BOHR International Journal of Data Mining and Big Data
2021, Vol. 1, No. 1, pp. 10-25

Copyright © 2022 BOHR Publishers
https://doi.org/10.54646/bijdmbd.003

www.bohrpub.com

An Efficient Hybrid by Partitioning Approach for Extracting
Maximal Gradual Patterns in Large Databases (MPSGerite)

Tabueu Fotso Laurent Cabrel

Department of Computer Engineering, UIT-FV, University of Dschang, Cameroon;
Department of Mathematics and Computer Science, FS, University of Dschang, Cameroon

E-mail: laurent.tabueu@gmail.com

Preprint submitted to BOHR International Journal of Data Mining and Big Data January 5, 2022

r

Abstract. Since automatic knowledge extraction must be performed in large volume databases, empirical studies
already show that at the level of generalized patterns, association rules and frequent graded patterns, there is an
exponential increase in the search space and in the number of relevant patterns extracted. Faced with this problem,
many approaches have been proposed, with the aim of reducing the size of the search space and the waiting time
in order to offer users a sufficiently small number of relevant patterns to make decisions or refine their analyses in
a reasonable and realistic time. Incremental frequency extraction algorithms in large databases are CPU intensive.
This paper presents a new technique to improve the performance of maximal frequent gradual pattern extraction
algorithms. The exploitation of this technique leads to a new and more efficient hybrid algorithm called MSPGrite.
Experiments performed confirm the interest of the proposed approach.

Keywords: Pattern mining, pruning search space, maximal gradual support, lattice, adjacency matrix, partitioning.

_J

1 Introduction

Data mining is part of a process known as knowledge
extraction (KDE), which appeared in the scientific commu-
nity in the 90s. It is a fast-growing research field aiming
at exploiting the large quantities of data collected every
day in various fields of computer science. This multidis-
ciplinary field is at the crossroads of different domains,
such as statistics, databases, big data, algorithms, artifi-
cial intelligence, etc. The type of data mining algorithm
varies according to the type of data (binary, categorical,
numerical, time series, spatial, etc.) of the dataset on which
the algorithms will be applied, or the type of relationship
between the patterns searched (sequence, co-variation, co-
occurrence,...) as well as the level of complexity and
semantics of the analyzed data [1]. It is generally about
finding co-occurrences or dependencies between attributes
or items and relationships between objects or transac-
tions in the dataset. Maximum Graduated Pattern Mining,
which is the focus of this paper is generally used to find
relationships between attributes, while clustering is used

to find relationships between objects [2]. Since automatic
knowledge extraction has to be performed in large vol-
ume databases, empirical studies already show that at the
level of generalized patterns, association rules and fre-
quent gradual patterns, one has to exponentially increase
the size of the search space to be explored in order to extract
useful knowledge. Faced with this problem, a large num-
ber of approaches have been proposed, with the aim of
reducing the size of the search space, the waiting time to
offer users a number of relevant patterns reduced enough
to make decisions or refine their analyses in a reasonable
and realistic time. Thus was born the technique of mining
closed gradual patterns [3]. The goal is to extract a con-
densed representation of fuzzy gradual patterns based on
the notion of closure of the Galois correspondence. It is
used as a generator of rules and gradual patterns. Other
approaches are based on the use of parallel algorithms
and multi-core architectures that minimize the extraction
time compared to their sequential versions. We can cite
the work of Negreverge with his Paraminer algorithm [4],
pglem by Alexandre Termier. However, very little work is
directed towards the extraction of frequent and maximal

https://doi.org/10.54646/bijdmbd.003
https://www.bohrpub.com

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

gradual patterns, hence our orientation in this article on the
extraction of frequent and maximal gradual patterns using
a hybrid approach based on the SGrite algorithm and the
partitioning of the dataset.

1.1 Obijectifs

General objective: Extract maximum gradual
patterns from large database

Specific objective 1: Our approach is based on the one
hand on a reduction of half in a first step of the research
space; This using as a search space, the lattice has at least
one positive term. Two simultaneous traverses of said lat-
tice are performed: an ascendant constructs the candidate
sets of size 1 to a size k, k * n, with n the number of
items. During the browse, sgrite join is used, and the other
descendant to manage the maximum gradual candidates
and frequencies. This first objective is the exploitation of
the lattice with at least one positive term as well as a two-
way lag with a view to further reducing the operations of
calculation of the support, and thus the search space.

Specific objective 2: Guarantee extraction in
large databases

The observation of the memory occupation during the
extraction of gradual patterns by the methods, Grite,
SGrite, and Graank often requires preprocessing to reduce
the size of the database [5] in the case of very correlate
or dense data. This adaptation is necessary to carry out
the extraction. However, this search remains partial and
can lead to the loss of quality patterns, indeed certain
co-variations between the attributes considered in the orig-
inal dataset and the rest of the dataset ignored remains
unvalued. To partially solve this problem, we propose to
process a search by partitioning the dataset, which will be
described in Section 4.

2 Literature Review

2.1 Definitions

Definition 1. Gradual item [1, 6, 7, 8, 5]: A gradual item
is of the form A*, where A is an attribute and * € {<, >,
<,>} and expresses a variation on the values of attribute
A. If the comparison operator * is equal to > (resp. <), A*
translates an increasing (resp. decreasing) variation of the
values of A.

Example 1: S=, S= and V= are examples of gradual items
taken from the Table 1. They can be interpreted respectively

as “the more salary increases”, “the more salary decreases”
and “the more location of the vehicle increases”.

Definition 2. Gradual itemset [9, 10, 6, 7, 8, 5]: A gradual
itemset, denoted {(A;, *i),i = 1...k} or {A,i=1...k},
is a concatenation of several gradual items interpreted
semantically as a conjunction of gradual items. It expresses
a co-variation of the values of its attributes. The size of a
gradual itemset is the number of its attributes.

For example, the gradual itemset A=SZ, taken from
Table 1, translates the covariation “the more the age increases,
the more the salary increases” .

Definition 3. Complementary gradual pattern [9, 1, 5]: The
complement of the gradual pattern M = {(A"),i=1...k}

is the gradual pattern c(M) = { (Aic(*i)), i =1...k}, where
c(*i) is the complement of the comparison operator *i.

In the literature [1], ¢(<) =2, ¢(>) = <, (<) =>, c(>)
=<

For example, given that we have a dataset with three
attributes as shown in Table 1, A > (resp. A > S >) have

for complementary gradual pattern A < (resp. A < S <).

Definition 4. Inclusion of gradual patterns: Gradual pat-
tern A is included in pattern B, denoted by A C B, if every
gradual item of A occurs in B.

The following two properties are true for each of the
three definitions of the notion of gradual support presented
in Section 2.2. They allow to significantly prune the search
space. Gradual support equality property [1, 11]: The sup-
port of a gradual pattern is equal to the gradual support of
its complement. Gradual support anti-monotonicity prop-
erty [1, 11, 10]: If the gradual pattern A is included in the
gradual pattern B then SG(A) > SG(B). The Definition 4 can
be illustrated by the example of the digital database pre-
sented in Table 1 which describes n = 8 people according
to m = 3 attributes.

For example, the gradual pattern A~ S~ is included in
the gradual patterns A~S”V~ and A~ S~ V<. The gradual
item A< is included in A<S<, A<S~ and A<S>V<.

Definition 5. Lattice of gradual patterns: A lattice of grad-
ual patterns is a lattice induced by the set of gradual
patterns provided with the inclusion relation. The set of
nodes of the lattice is the set of gradual patterns. An arc
which goes from a pattern A to a pattern B reflects the
inclusion of A in B.

Definition 6. Lattice of gradual patterns having at least
one positive term: The trellis of the gradual patterns hav-
ing at least one positive term is the sub-trellis of the trellis
of the gradual patterns which contains only the gradual
patterns having at least one gradual item which reflects
an increasing *i variation. Such a pattern is of the form
AT{AM}i=2.. .k

The lattice of gradual patterns represents the search
space for frequent gradual patterns. Lemma 2.1 can be used
to reduce the search space by half, for example to the lattice
of gradual patterns having at least one positive term. The
concept of lattice is illustrated in Figures 1 and 2.

Tabueu Fotso Laurent Cabrel

3 B B0) B g)

Figure 1. Lattice of gradual patterns based on the attributes
of Table 1 [5, 11].

Figure 2. Lattice of gradual patterns having at least one
positive term obtained from the attributes of Table 1 [5].

2.2 Gradual Pattern Extraction Techniques

The linear regression approach proposed by Hiiller-
meier [12] makes it possible to extract gradual rules whose
support and confidence are greater than the threshold set
by the user. This approach only considers fuzzy data and
rules whose premise and conclusion are smaller than or
equal to two. However, the concept of T-Norm which is
part of this approach allows to overcome the limit of the
size of the premise and the conclusion of the rules.

In the approach Berzal et al. [13], the weight of a grad-
ual pattern, also called Gradual Support (SG) is equal to
the number of couples of distinct objects which verify the
order induced by the pattern divided by the P total number
of couples of distinct objects in the database. Thus, SG(M)
_ ZO,U’EDXD ‘OjMo,‘
—PIPI=1)
the database. The approach of Laurent et al. [10]. is an
improvement of the approach of Berzal et al. [13] which
exploits the fact that if a couple of distinct objects (o, 0”)
verifies the order induced by a gradual pattern then its
complementary (0, o) does not verify it. In this approach,

we have: SG (M) = %%m. In the so-called max-

imum paths approach [11, 9, 14, 15], the gradual support
of a gradual pattern M is equal to the length of a maxi-
mal path associated to M divided by the total number of
objects in the database. In this approach we have: SG(M)

= max%w. The SGrite [16, 5] approach is based on

, where M is a gradual pattern and D is

Grite. It is an algorithm for discovering gradual patterns on
the basis of maximum paths. It uses the anti-monotonicity
and complementary patterns properties of the support to
prune the search space. The lattice with first positive term
used reduce to half the search space. Another particular-
ity of SGrite is that requires one sweep of the dependence
graph while Grite requires two sweeps for calculation of
gradual support. She uses two classes of gradual support
computation algorithms which perform a single sweep of
the precedence graph.

2.3 Presentation of SGrite Algorithm

In SGrite algorithm, the two fundamental operations are
the generation of candidates and the computation of the
support. The most requested and most CPU intensive oper-
ation is the support calculation since it is performed for
each candidate. The SGrite algorithm is based on a num-
ber of concepts defined below. In the following definitions,
O is the set of objects, 0 and o’ are objects.

Definition 7. Adjacency matrix: The adjacency matrix of a
gradual pattern M is a binary matrix which associates with
each pair of objects (o, o) the value 1 if the pair of objects
respects the order induced by the pattern M and 0 other-
wise.

The adjacency matrix of a pattern induces a dependence
graph whose nodes are objects and non-zero inputs of the
adjacency matrix represent the dependences between cou-
ples of nodes.

Definition 8. Father node and son node: Given the adja-
cency matrix Adjy of a pattern M, if Adjpo,0'] =1 then o
is the father of o’ and o’ is a child of o.

Definition 9. Isolated node: It is a node which is not tied
to another node, i.e. it has neither father nor son. Given
the adjacency matrix Adjys of a pattern M, the set of iso-
lated nodes is: {0 € O|yo’ € O, Adjplo,0'] = 0 A Adjpm
[0’,0] = 0}.

Definition 10. Root: It is a node that does not have a father,
but is linked to all the other nodes. Given the adjacency
matrix Adjys of a pattern M, the set of root nodes is: {0 €
Olyo" € O, Adjmlo,0'] =1 A Adjpm[o’, 0] = 0}.

Definition 11. Leaf: It is a node having no son, but which
is not isolated. Given the adjacency matrix Adjy of a pat-
tern M. the set of leaves is: {0 € O|yo’ € O, Adjpm[o,0'] =
0,30" € O|Adjpm[0”,0] = 1}.

The SGrite algorithm takes as input an adjacency matrix,
an object node € O and a vector, called Memory, of size |O|
whose indexes are the objects of O. We assume that Mem-
ory[o] = —1Vo € O before the execution of each algorithm.
During the execution of each algorithm, Memory[o] con-
tains the current maximum distance between o and any
leaf. At the end of the execution of each algorithm Mem-
ory[o] contains the final maximum distance between o and

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

any leaf. The first class of algorithms is to update the values
of the parents of a node as soon as the value of this node is
updated. The second class of algorithms is to use only the
final value of a node to update the values of the nodes of
his parents. In Sgrite approach, we have four versions of
the so-called SGrite [5] algorithm, namely SGOpt, SGB1,
SGB2 and SGI1, depending on the technique of improv-
ing the computation of the gradual supports. The SGOpt,
SG1 and SGB1 method produce the best result on various
datasets[?].

3 Methodology

To achieve our goals, several properties must be consid-
ered: (P1) anti-monotony support, (P2) complementary
gradual patterns, (P3) use of the frequency of sub-patterns
of a frequent gradual maximum for pruning. The role of
P1 and P2 is already known and shown in sgrite for the
upward traversal for the generation of frequent gradual
patterns. P3 makes it possible in the downward traversal
to ignore frequent gradual sub-patterns of a maximal grad-
ual pattern that I have to determine in advance. At the
same time during the extraction process, in the downward
path of the lattice with at least one positive term, we con-
struct the maximal progressive candidates which belong
to the lattice has at least one positive term. Hence the
guarantee of the conservation of the properties of the opti-
mal search space. In addition, by browsing down, we can
reduce the search space further. By a chain filtering. Thus,
we use to prune on the one hand the set of infrequent grad-
ual sub-patterns which is applied to the maximal gradual
candidates, and on the other hand the sub-patterns of a fre-
quent and maximal gradual pattern discovered beforehand
starting from a set of the candidate gradual maxima of
larger size during the procedure, and finally, the last prun-
ing is done by calculating the gradual support to check the
frequency of the candidates and their relevance. To com-
plete the extraction process, there are two stop conditions.
Either the current set of candidates is exhausted during the
upward traverse, or the maximum number of candidates is
exhausted first and the search is also terminated.

3.1 Hypotheses

1. Global time reduction of the support computation
(the one brought by sgrite, omission of the compu-
tation of the gradual support of the frequent sub-
patterns and the reduction of the depths of the depen-
dency graphs associated to the maximal candidate
pattern), following the computation of the fusion of
the n gradual items composing the candidate in ques-
tion.

2. Reduction of the search space.

3. The reduction in the number of gradual knowledge

produced, put with the possibility of listing them
exhaustively.

4. The choice of the size of the different partitions. To
begin we take 2 partitions and we take the partition
1 the biggest possible extractable by sgrite, then the
partition 2 it is a supplement of items of the consid-
ered data set.

4 Presentation of the Hybrid
Extraction Method for Maximal
Gradual Patterns

In this section we will explain the general operating prin-
ciples of the MPSGrite method. Section 4.1, explain how
the partitioning method works. Section 4.2 presents the
operation of the algorithm for finding maximum frequent
gradual patterns. The notations used in this part are sum-
marized in the Table 4. It is important to specify that what
motivates this algorithm is its relevance. Indeed, the algo-
rithm is oriented towards a different concept from that of
“SGrite” and its extensions; Partition will have the particu-
larity of being much more efficient on very large databases,
like the current OLTP! systems, hence the importance of
his study.

4.1 Partition Working Principle

To simplify the description we will limit to 2 partitions and
consider a dataset D, which has n items. D is partitioned
into two data sets Dy of size n; and D; of size ny, such
that n = ny + ny. Dj represents partition 1 of the database
containing the n; first items, while 2 is the second partition
containing the n; last items of D.

Definition 12. partition of a database: It is a part of D
which has the same number of transactions as D and which
takes a contiguous subset of the items from the dataset
D representing the items taken into account in the score.
Denoteby D and I = {i;}k = 1...n theitems, ny < n, if Dy
the k-th partition which starts with item number 1/1 <1 <
n we have Dk = (O, I) with I Q TandI = {ik}k:lmlJrnk,l.

Definition 13. Independence of two partitions of a
database: Let D1 = (O, I1), Dy = (O, ;) two partitions of a
dataset D = (O,I) /11 C 1,12 C L They are independent
iff [N =.

Example 14. Illustration of partition: Let I = {A, S, V} be
the set of attributes of the salary data set, see Table 1; where
A is the age attribute, S is the salary and V is the vehicle
location number attribute.

For example D; = (O,{A, S}) and D, = (O,{V}) are two
independent partitions of dataset of Table 1.

10nLine Transactional Processing.

Tabueu Fotso Laurent Cabrel

Table 1. Salary data set D.

id Age(A) Salary(S) Vehicle(V)
ol 20 1200 1
02 28 1850 1
03 24 1200 0
o4 35 2200 1
05 30 2000 1
06 40 3400 1
o7 52 3400 2
08 41 5000 2

Table 2. Partition D; of D.

id Age(A) Salary(S)
ol 20 1200
02 28 1850
03 24 1200
o4 35 2200
05 30 2000
06 40 3400
o7 52 3400
o8 41 5000

Table 3. Partition D, of D.
id Vehicle(V)
ol 1
02
o3
o4
o5
06
o7
o8

NNNR, P, PR, O

Order defined on the sets.

Definition 15. Order on items: The order relation on the
set of items of a data set D, denoted <; denotes the natural
order relation of appearance of items in D.

For example in the data set of the Table 1 we will have
as order between the items A <; S <; V.

Definition 16. ordered gradual itemset: An ordered grad-
ual itemset is a gradual itemset which respects on the set of
items which constitutes it the order defined by its position
in the set of items for the data set D = (O, I) consid-
ered. Denote by M = {A}'};c {12,...n} @ gradual k-pattern,
it is ordered iff Vj, 1 <j < k, with j which represents the
index of appearance of the item in the pattern M, we have
A] <1 A]‘+1.

Definition 17. Gradual positive ordered itemset: A posi-
tive ordered gradual itemset is an ordered gradual itemset
so at least the first term has increasing variation.

For example, the gradual itemsets A~ S<, A< S<, A~
V< and A< S< V< are ordered gradual itemsets. On the

other hand S A~ is not an ordered gradual itemset, even
if it has the same meaning and the same gradual support
as A”S< ordered. itemset, even if it has the same meaning
and the same gradual support as A~ S< ordered.

Proposition 18. Total order on two gradual items: When
doing a pairwise comparison of gradual items, for example
ATl and A§2, if A; <; A, then Ai‘l < A;z and vice versa,
but in the case of Aj is equal to A; the order is induced by
the variation associated with each gradual item as follows:
if *1 = *2 then Ai‘l <t A;z, if on the other hand *1 = <
and * 2 = > then Afl <f A;z, soif *1 = > and * 2 = < then
A3z <m AR
For example in the Table 1 S< <" S~.

Definition 19. Order on two gradual ordered pattern: Let
M; = {A1'}io1 g, My = {A2}i_1_j, such that k; = k;
two ordered gradual itemsets see Def. 16. They are ordered
iff Vk = 1...min(ky, k), Aly <; A2 or ALFE <™ A2 see
Prop. 18. Note this order relation between ordered gradual
patterns <7' we then have M; <7' M.

For example, for the gradual itemsets A~ S<, A~ V<
respects the following A~ S< <" A”V<, which means that
the gradual pattern A~ S< is less than A~ V< following this
order relation.

Definition 20. Set of ordered gradual patterns: It is a set
of gradual patterns ordered by the relation <}'. Denote by

Lygo = }{Lingo }iz1..n the set of sgts of ordered gradual pat-
terns VL;,q, € LMgQ such that L},., = {m;};=1.x we have
then Vm], Mmji1 € Li‘rzgo' m; <’I11 Mji1, withj=1...k—-1
Each L;,, is a set of ordered gradual patterns.

4.1.1 Principe

The search by partitioning is based on the principle of
SGrite, that is to say one of these optimal variants SGOpt
or SG1 [5] on each of the independent partitions consid-
ered. Once all the sets of frequent patterns of each of the
partitions have been determined and organized by level,
according to the sizes of patterns, we must initially merge
the gradual patterns of the same level of each partition. The
next step is to generate the missing potential candidates by
the method described below. this process of determining
the frequencies of whole database goes from frequent item
set of size 1 to the maximum possible size. The steps below
always take place in the search space for the lattice at the
first positive term. We can summarize the approach in 4
steps:

1. Step 1: determination of the frequent and infrequent
gradual patterns of each partition;

2. Merging, level by level, of the gradual itemsets of all
the partitions, on the one hand the frequent ones, on
the other hand the infrequent ones;

3. Iterative and pairwise generation of candidate pat-
terns, based on the gradual patterns determined in

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

step 2 as follows:

(a) Choose two levels to start the generation of
gradual candidates of size k + 1 from the fre-
quents of size k previously known. At the start
level and nextLevel are respectively 1 and 2;

(b) For each candidate ¢ k = {A}';_;_x}, frequent,
of the current ordered set of the gradual pat-
terns considered “er § of size k, extract its prefix,
Prefix; 1 = {A}'i—1.k-1}

Frequent gradual patterns

level 3

A~S” V= SG: 37.5.0%

level 2

A<S< SG: 25.0%; A~ S~ SG: 75.0%; A~ V-~ SG:
25.0%; A=V~ SG: 37.5%; S~ V=~ SG: 37.5%

level 1

A< SG: 100%; A~ SG: 100%; S=< SG: 75%; S~ SG:
75%; V< SG: 37.5%; V= SG: 37.5%

(c) From the obtained prefix, construct its adjacency
matrix, and find the bounds in the set of ordered
frequent and infrequent gradual patterns of size

In this phase we can see that in the gradual 2-patterns,
those in red color are generated by new patterns formed
from items of the 2 partitions.

k having as prefix Prefix;_1;

(d) Then retrieve the value of maximum attribute,
noted max. It is the gradual item in position k,
resulting from the two sets of size k (frequent
and infrequent) which has the greatest value;

(e) Generate the suffixes that are used for the merge
with Prefixi_1, and noted IGc = {(max + 1)<,
(max + 1)~ }i—q._ (1] —max+1) Of gradual items.

(f) determine support for new candidates c new =
Prefix;_1 U e, Ve € IGc. The frequents are added
to the frequent gradual k-patterns of level k and
the infrequent to the infrequent gradual k-motfs.

(g) repeat the process 3-(a) to 3-(f) until the set
of frequent ordered graduals of size k are
exhausted.

4. Repeat steps 2) and 3) until the current candidate set
is empty.
Illustration of Partition

Example 21. Step 1: set of frequent gradual patterns by par-
tition

frequent gradual patterns frequent gradual patterns

of partition 1, Table 2 of partition 2, Table 3
level 2 level 2

A~ 8= SG: 25.0%; A~ S~

SG: 75.0%

level 1 level 1

A< SG: 100.0%; A~ SG: V< SG: 37.5%; V> SG:
100.0%; S=< SG: 75.0%; S~ 37.5%
SG: 75.0%

Example 22. Step 2: merge the gradual patterns from par-
titions 1 and 2 (see Tables 2, 3)

frequent gradual patterns of initial fusion

level 2

A~ S< SG:25.0%; A~ S< SG: 75.0%

level 1

A< SG: 100%; A~ SG: 100%; S< SG: 75%; S~ SG:
75%; V< SG: 37.5%; V= SG: 37.5%

Example 23. Final step: Set of frequent gradual patterns of
all partitions

Example 24. Set of Frequent Gradual Patterns of Sgrite

Frequent gradual patterns of Sgrite

level 3

A~S7V~> SG: 37.5.0%

level 2

A~ S< SG: 25.0%; A~ S~ SG: 75.0%; A~ V< SG:
25.0%; A= V~= SG: 37.5%; S~ V= SG: 37.5%

level 1

A< SG:100%; A~ SG: 100%; S< SG: 75%; S~ SG:
75%; V< SG: 37.5%; V> SG: 37.5%

Table 4. Notations used in the Partition algorithm.

number of partitions in data set D.

(n1,ny,...,nn) array of size n containing the number

of items in each partition; n k is the
number of items in the kth partition
1. rth partition of the dataset.

Set of global candidate gradual
k-itemsets (potential frequent gradual

itemsets).

mapCC Set of global candidate gradual
itemsets (potential frequent itemsets)

mapF; Set of frequent gradual itemsets in
partition D,

mapF] Sets of gradual k-itemsets ordered (see
Def 16) in the partition D,

mapFC Set of global frequent itemsets
(frequent itemsets).

I FE Set of global infrequent gradual
k-itemsets, i.e. for all partitions.

maplF, Set of infrequent gradual itemsets in
the partition D,.

maplF Sets of ordered infrequent gradual
k-itemsets(see Def 16) in the partition
D;.

mapIFG Set of global infrequent itemsets, i.e.

for all partitions (infrequent itemsets)

In the above notations, the sets mapCG, IFkG all have
the two fields: gradual pattern and gradual support (SG),
for each of the elements belonging to these sets. The sets

Tabueu Fotso Laurent Cabrel

mapF,, mapF®, mapC®, mapIF, and mapIFC are maps or
association tables where the keys are sizes of gradual pat-
terns of each level and the values are a set of k-gradual
patterns ordered by the level k considered (i.e. of key k).

Remark: all sets of gradual itemsets contains the positive ordered
gradual itemsets.

¢ The Partition-Gen-Sgrite (D,, minsupport) algo-
rithm uses the Sgrite principle on D, and returns the
set mapF; local gradual frequent patterns, i.e. gradual
patterns ordered according to the definition 20 which
are frequent in the partition D, range by frequency
size level. It updates during the traversal of each level
of the lattice with at least one positive term, the infre-
quent gradual patterns of said level in the set mapIF]

from mapIFC.

e The procedure genCandidateFreqUnionTwoParti-
tionConsecutive (Fyy, Fpp, mapF©, mapIFC) allows
to generate and update the set of global frequent and
infrequent candidates obtained from the sets F p 1
and F p 2 here partitions being processed.

In the algorithm 2, the data structure resultatR has five
fields: typeMap which represents the indicator on the set
choose between mapFC¢ and mapIFC, where we will find
the gradual item index value of the suffix of the level pat-
tern prefix, Prefixj,p,; maximal, minl and maxl are the
index bounds of over-patterns of Prefix;y,.; in mapPlgv eIy
min2 and max2 are the index bounds of the over-patterns
of Prefixjpe in mapl Fl(e;v o1+1- The construction of resultatR
is carried out using the function byPrefixFindPositions-
MinMax of the algorithm 2. The function matrixAdjacency
determines the adjacency matrix of the gradual pattern
taken as a parameter. The genCandidatOfALevel function
generates candidate patterns of size level + 1, following the
principle described in step 3-(e) of Section 4.1. In this algo-
rithm, on line 1, the productCartesian function generates

a set of patterns resulting from the Cartesian product of
the two sets taken as a parameter; Here (get(F]Zl)) (resp.

get(FIZZ)) represents the ordered set of the gradual patterns
of the level k; of mapF,; (resp. the set of gradual patterns
complementary to each pattern of level k; of mapIF,;).

The function filterSetBylnfrequentSet AndSupportCompute
(candidateFusion) allows: (1) to prune first the candidates of
its set candidateFusion in parameter, which are supermotif
of a inferred pattern of mapIFC. If the candidate to prune
is Cx = {A;}i—1.x then it generates two new candidates of
size k-1, Cly_y = {Ai}ic1.k-1, C2k1 = {Ai}i—1. k2 U Ax
which are added to the potential candidate list list. On the
other hand if C k is frequent then, we add Cy at level k
of mapFG and its two frequent sub-patterns C1;_1,C2;_4
build exactly as above at level k-1 of mapFC. Once candi-
dateFusion = @ we have completed the process (1) and we
have a valid candidate set list. Second, in (2) we have to
perform another filtering by support calculation. Here, for

any candidate k-pattern Cy, = {A;};—1._x of list, Cy € list:
if Cy is frequent then we add C;, at level k of mapF G, and
Cly_q1, C2_; at level k-1 of mapFG, otherwise delete C k
of list and add at the end of the list C1 k-1 , C2 k-1 as a
new candidate in the list list. We repeat this process until
list = @.

Note: In each of the algorithms below, before calculating
the support of a k-pattern we check if it does not belong
to one or the other of the sets makaG or mapl F,? , because
indeed the k-pattern may well have been determined dur-
ing the ascending scan of the search space of the trellis to
the first positive term or during the descending scan. The
interest is to reduce the number of support computations
to the maximum which is a greedy operation.

4.2 Principle of Finding Maximum Gradual
Patterns

The method we use is based on Sgrite, which itself is an
optimized method of Grite in terms CPU time for extract-
ing gradual patterns. Indeed the MPSgrite method that
we develop in this article has two objectives to achieve.
The first objective is to optimize the time for extracting
the gradual patterns considered, and the second goal is to
reduce the number of gradual patterns extracted. Indeed,
in real life, experts in the field say that the fewer patterns
extracted, the easier it is to interpret and make decisions.
We first opt for an approach of dual traversal of the lattice
space to the first positive term from levels 1 to n by Sgrite
and simultaneously from levels n to 1. The first problem of
this combined approach is the generation of the candidates
of the maximal set which is of the order of 2"~1, with n the
number of gradual items of the database. Consequently, the
generation of candidates will have a higher CPU time cost.
In addition, we also note that:

Lemma 25. The greater the number of maximum initial
candidates, the higher the determination of the following
maximal candidate sets, as well as the operation of fusion
of n adjacency matrix composing the n-candidate gradual
motifs considered.

Thus, to keep an optimal method of extracting the grad-
ual patterns of said maxima, it will be a question of opting
for a method hybridization. The base will be based on the
choice to be made according to the parameter n number
of gradual items. Consider dataset D of n items, t transac-
tions, a fixed value p representing which method to use.
Under these conditions, if n is less than or equal to p
then MPSGrite uses the two-way browse method sense,
that is, simultaneously ascending and descending from the
lattice to a positive term. On the contrary, if n is strictly
greater than p then a bottom-up lattice traversal approach
is used which first efficiently generates the lattice of fre-
quent gradual patterns, and then conversely in the descent
of the lattice, by “backtracking”, we extract the frequent
and maximal gradual patterns.

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

Algorithm 1 Extraction of frequent gradual patterns with partitioning.

Require: dataset D; minimum support threshold minsupport; number of partitions n; (ny,1y,...,1y,);

Ensure: mapFC; mapIFC;
{Creation of partitions p1 to pn}
1: partition (D, n, [ny,ny, ..., 14));

{Extraction of frequent gradual itemsets in each partition}

: forr=1ton do
read partition D;;

: end for

mapFE, < Partition-Gen-Sgrite (D,, minsupport); {rule

{Mergers of gradual itemsets frequent excerpts same level in each partition.}

. for (k =1,k <=mn;k++) do

makaG «— U Z{mapF;

putToMap (k,mapFC, mapFC);
putToMap (k,U'=}mapIF], mapIFC);
10: end for

11: Fpy < mapFy;

12: Fpy < mapk;

o ® N

13: Fpy < genCandidateFreqUnionTwoPartitionConsecutive(Fpy, Fpa, mapFC, mapIFC);

{Calculation of global itemset support}
14: forr =3ton do
15: Fpy < mapF,;

16: Fpy < genCandidateFreqUnionTwoPartitionConsecutive(Fpy, Fpa, mapFC, mapIFC);

17: end for
18: return (mapFC, mapIFC);

4.3 Presentation of the Components of the
Hybrid Method

The search space is limited in each of the components
below to the lattice with a positive term. Two components
of the hybrid method are required, namely component
1 and component 2. Component 1 takes place following
the path in two simultaneously ascending and descending
directions of the positive lattice, its description is carried
out in Section 4.

4.3.1 Component 2: ascending the positive lattice

This algorithmic component proceeds in two main steps:
In step 1, it is a question of extracting the frequent gradual
patterns performed by Sgrite. Once this first step is com-
pleted its result will be an entry for step 2.

In step 2, we generate the maximum gradual patterns
from the frequencies of step 1. During the generation we
must respect the notion of lexicographic order of Apriori,
Grite and SGrite. Let m < n is the size of frequent gradual
patterns of maximum cardinality.

In this case the set of so-called frequent maximum is ini-
tialized by all the frequent gradual m-patterns. Then one
proceeds iteratively to prune the level k-1 of all the sub-
patterns which allowed the construction of the maximum
gradual k-patterns previously determined and purified at
iteration k. This process continues in this way until the cur-
rent processing value of k is 1. In fact, when k = 1, the

maximum 1-gradual patterns are determined. This com-
pletes the “backtracking” determination of the maximum
step patterns.

5 Experimentation

This section experimentally compares the performance of
SGRrite and the novel hybrid approach MPSGrite. We
used three sets of data. The first two are test data called
F20Att100Li having 20 attributes, 100 transactions and
F20Att500Li having 20 attributes, 500 transactions and
taken from the site https://github.com/bnegreve/para
miner/tree/master/data/gri. The last set of data made
up of meteorological data from the site http://www.mete
o-paris.com/ile-de-france/station-meteo-paris/pro/.
For further experimentation we have added five other
datasets: C250-A100-50 a test dataset and 4 other real ones
which are LifeExpectancydevelopped, LifeExpectancyde-
velopping, winequality-red and fundamental.

5.1 Description of the Datasets

This part presents the data used for the experiments carried
out in this work.

We used a practical database called the weather fore-
cast downloaded from the site http://www.meteo-
paris.com/ile-de-france/station-meteo-paris/pr
o/: these data come from the Parisian weather station of

https://github.com/bnegreve/paraminer/tree/master/data/gri
https://github.com/bnegreve/paraminer/tree/master/data/gri
http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/
http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/
http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/
http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/
http://www.meteo-paris.com/ile-de-france/station-meteo-paris/pro/

Tabueu Fotso Laurent Cabrel

Algorithm 2 genCandidateFreqUnionTwoPartitionConsecutive.

Require: Fpy; Fpo; mapFC; mapIFC;
Ensure: mapF®; mapIFC;

{fusion of the frequent patterns of the highest level of the 2 partitions of level k; and k»}

1: candidateFusion < productCartesian(get(Fpllq), (get(Fp];Z) U get(Fpléz));
{Filtering of candidates: pruning of over-patterns of infrequents and infrequents determined by calculation of the

support}
2: while candidateFusion # @ do

3. candidateFusion = filterSetByInfrequentSetAndSupportCompute (candidateFusion);
4: end while
{initial reference level for the lattice path};
5: level = 1;nextLevel = 2;k = k1 + ko;
6: refList < mapl—“lfvd;
7. while level < length(mapFC) — 1 and nextLevel < length(mapF®) do
8: for j = 1 to length(refList) do
9: Prefixj e <— get(j, refList);
10: resultatR = byPrefixFindPositionsMinMax (mapFC, mapIF©
Prefixjppe, nextLevel);
11 adjPre fix = matrixAdjacency (PrefiX;ope1);
12: genCandidatOfALevel (mapFC, mapIFC, resultatR, adjPrefix, Prefix,,;, nextLevel);
adjPrefix, Prefix|ope, nextLevel)
13: end for
14: level < level +1;
15: nextLevel < nextLevel + 1;
16: refList =<« mapFlgvel;
17. if notImapFS . ., then
18: putToMap(mapF G nextLevel,®);
19: end if

20: end while
21: return (mapFC, mapIFC);

Saint-Germain-des-Prés. The database contains 516 prac-
tical observations made over two days (July 22-23, 2017),
described by 26 numerical attributes such as tempera-
ture, accumulated rain (mm), humidity (%), pressure (hPa),
wind speed (km/h), wind gust speed (km/h), perceived
temperature or distance traveled by the wind (km). Results
obtained by Sgrite by setting the gradual support threshold
s = 10%, 130 gradual patterns are extracted by the Sgrite
algorithm [5].

The C250-A100-50 data set is taken from the site https:
//github.com/bnegreve/paraminer/tree/master/da
ta/gri. For reason of memory space we have reduced the
initial number of item 100 to 12, because otherwise the
extraction is not possible on our computer. winequality-
red.data is taken from the site https://archive.ics.uci.
edu/ml/datasets/wine+quality. It is the Wine Qual-
ity dataset related to red vinho verde wine samples, from
the north of Portugal. The goal is to model wine quality
based on physicochemical tests. The attributs of dataset
uses the input variables (based on physicochemical tests):
fixed acidity, volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density,

pH, sulphates, alcohol, and output variable (based on sen-
sory data) quality (score between 0 and 10).
LifeExpectancydevelopped.csv and LifeExpectancyde-
velopping.csv [5]. This two data set is also the real data
set is taken for the site https://www.kaggle.com/k
umarajarshi/life-expectancy-who that are open access
data. The data was collected from World Health Organiza-
tion (WHO) and United Nations website with the help of
Deeksha Russell and Duan Wang. For this life expectancy
dataset, attributes 1 and 3 are removed and the rest are
used [5]. The dataset is designed to answer some key
questions such as: do the different predictors I initially
select actually affect life expectancy? Should countries with
low life expectancy (under 65) increase health spending
to increase life expectancy? Is life expectancy related to
diet, lifestyle, exercise, smoking, alcohol etc.? Is there a
positive or negative relationship between life expectancy
and alcohol consumption? Do densely populated countries
have a lower life expectancy? How does immunization
coverage affect life expectancy? The final merged file (final
dataset) consists of 22 columns and 2938 rows or 20 pre-
dictors. All prognostic variables are: immunization factors,

https://github.com/bnegreve/paraminer/tree/master/data/gri
https://github.com/bnegreve/paraminer/tree/master/data/gri
https://github.com/bnegreve/paraminer/tree/master/data/gri
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://www.kaggle.com/kumarajarshi/life-expectancy-who
https://www.kaggle.com/kumarajarshi/life-expectancy-who

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

mortality factors, economic factors and social factors. Due
to the size of the original dataset, we split the data into
two groups: LifeExpectancydevelopping.csv for developed
countries and LifeExpectancydevelopping.csv for develop-
ing countries, where we removed transactions with values
empty.

The fundamental dataset is a playground for fundamen-
tal and technical analysis of the New York Stock Exchange
(S&P 500 companies historical prices with fundamen-
tal data) The fundamentals.csv dataset contains metrics
extracted from annual SEC 10K fillings (2012-2016), should
be enough to derive most of popular fundamental indica-
tors. The fundamentals.csv come from Nasdaq Financials.
For this dataset, we have at begining 77 attributes. After
preprocessing which consisted of removing empty-valued
transactions, we derived a dataset with 1299 transactions
and 74 attributes. The removed attributes are the first four:
stock symbol, end of period, accounts payable, accounts
receivable. for more information, see https://www.kagg

le.com/dgawlik/nyse?select=fundamentals.csv; for
reasons related to the characteristics of our small memory
computer, we extracted part of the fundamental.csv data
set for the experiments, which gave us a data set of 300
transactions and 35 attributes. Transactions are the top 300
and attributes are the top 35 [5].

5.2 Evaluation of Algorithms

All experiments on the datasets described in previous sec-
tion were done on a Intel Core T M i7-2630QM CPU @
2.00GHz x 8 with 8GB main memory, running Ubuntu
16.04 LTS. For each dataset, we considered a number of
support thresholds and recorded the corresponding execu-
tion times as depicted on Figures 3, 5, 8, 10, 12, 14, 16, and
18 and the number of extracted patterns as depicted on Fig-
ures 4, 6,7,9,11, 13, 15,17, and 19. In these figures, (N It.
X M Tr.) denotes the number items (N) and the number of
transactions(M) of a dataset.

CPU time comparison: a part of C250-A100-50 dataset(12 It. x 251 Tr.)

—TimeSE = TimebMSG

L]
ao

L e S—

P N

20

15

Tirme (S)

10

4 R
& & &P

B b A
o TP P F P

Figure 3. Different CPU times (Tr. (Resp. It.) Denotes Transactions (resp. Items)) Dataset C250-A100-50, 251 Tr. et 12 It.

Comparison of number of pattems exracied |

a part of CIS0-AL00S0 danase] 12 0. x 251 Tr)
MW
LW
A
MR
s | WsGR:
SR I | B

%
AN
¢ Nam
1A%
0%

S B BEL D NP DD
FIEIFIIIIPFELP

{a) experimentation 1 Data set C250-

AT00-50.

Comparizon of number of panems extracted -

a pat of CH50-A100-50 datasa12 It & 517Tr)
ik
am
g5
a0 !
E) | | | WG
201]] || BNSGE
o
k)
kL)
m
221

BA B EIANDH DD D
L L P P

o pEEOErTE

e e

(b) experimentation 2 Data set C250-
A100-50

Figure 4. Experimentation on dataset C250-A100-50 for the number of patterns gradual extracted.

https://www.kaggle.com/dgawlik/nyse?select=fundamentals.csv
https://www.kaggle.com/dgawlik/nyse?select=fundamentals.csv

Tabueu Fotso Laurent Cabrel

Comparison of CPU extraction times on the LifeExpeciancydevelopped datasel.

e TiR5G === TimeMSG

Tirma (=)

—TimeSG === TimeMSG
250

Tima (5)
=

4 A s 8 A8 N S e
OGNS A S S N

Threshald

(a) Data set
opped, 245 Tr. et 20 It.

LifeExpectancydevel-

Threshold

ping, 1407 Tr. et 20 It.

Comparison of CPU exiraction imes on the LifeExpectancydevelopping dataset.

.Y A 5 4 8 A 8 A b od A B
o o PEEITIETTIFS S P

(b) Data set LifeExpectancydevelop-

Figure 5. Different CPU times (Tr. (Resp. It.) Denotes Transactions (resp. Items)) for Life Expectancy.

Comparison of the Number of Patterns Retrieved
from the LifeExpectancy developped dataset

B #SGrite WIMSGrite

100.00%
90.00%
B0.00%
70.00%
60.00%
50.00% 1
40.00%
30.00%
20.00%
10.00%

0.00%

94 number of patterns

¢

e

Threshald

(a) exp.
developped.

IR 5
FESPFES P I I P

1 Data set Life Expectancy (b) exp.

Comparison of the Number of Patterns Refrieved from

the LifeExpectancy developping dataset

W#SGrite WHMSGrite

§
|
|
|
|
|
|
|
I
I

T —
-
——

—_—_—————————y
——————

P Ay

developping.

1 Data set Life Expectancy

Figure 6. Experimentation on dataset Life Expectancy for the number of gradual patterns extracted.

Comparison of the Number of Patterns Retrieved
from the LifeExpectancy developped dataset

B#5Gite W#MSGrite

Compavrison of the Number of Patterns Retrieved from

the LifeExpectancy developping dataset

B#SGite W#MSGrite

8 85 8 8

e
=

IZW‘ %
)
., IUW‘ 0
§ ol)
E 5
Q

5 Bm\ 0
g)
g zm‘ 20

; ¢ """""""l"
0 0

g G} A A f N

R R SRR O K B I Sl dP Py & o

Threshold

(a) exp. 2 Data set Life Expectancy

developped.

Threshold

developping.

(b) exp. 2 Data set Life Expectancy

Figure 7. Number of gradual frequent patterns extracted over the life expectancy dataset.

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

Figure 8. Different CPU times (Tr. (Resp. It.) Denotes Transactions (resp. Items)) forF20Att500Li 500 Tr. et 20 It.

Comparison of number of patterns extracted of F20AH500L dataset

Time (s)

CPU time comparison of F20Att500Li dataset (20 It. x 500 Tr.)

e TIMESG = TIiMeMSG

Threshold

Comparison of number of patterns extracted of F20Att500Li dataset

100.00% 0

0.00% | |[|[|[1%

80.00% | | | 160
[[1]]1]1] -
g > \ L[] RESGte : w#SGiie
Bl | | I n#SGie ; 0 w#SGrie
R | |] i
S o |] 5 50‘
£ i 8

- (A ﬁ‘

0.00% 0

SR R R R R R S Pl PRI R P DD

‘)'0'Q'Q'Q'Q'Q'Q'Q'Q‘O'Q‘Q' 00’0‘%‘%‘0'@‘0'0’0%000

(a) exp. 1 Data set F20Att500L1. (b) exp. 2 Data set F20Att500Li.

Figure 9. Experimentation of data set F20Att500Li on number gradual patterns extracted.

Comparaison CPU Time: dataset F20Att200Li

— TIMESG = TimeMSG

Time (s)

N el) N o "
YooY oV oV Y P

Figure 10. Different CPU times (Tr. (Resp. It.) Denotes Transactions (resp. Items)) forF20Att200Li 200 Tr. et 20 It.

Tabueu Fotso Laurent Cabrel

% number of paterns

Comparison of number of patterns extracted of F20A500Li dataset

W #MSGrite
W#SGiite

R S R S SR Y
SIS IS PP T P

(a) exp. 1 Data set F20Att200L1.

%6 number of patterns

Comparison of number of patterns extracted of F20Att500Li dataset

¢

o

(b)

B#SGrite
1 MSGnte

A I I S T S B B v
09 0@ Q,'» 0"\’ Q,) Q"y B"\‘ QJ]' Qr‘l' Q!]' QCL QI'@ Dt'b

exp. 2 Data set F20Att200Li.

Figure 11. Experimentation of data set F20Att200Li on number gradual patterns extracted.

Comparaison CPU Time: dataset F30Att100Li

— TIMESG = TIimeMSG

250

200

150

100

Time (s)

Threshold

Figure 12. Different CPU times (Tr. (Resp. It.) Denotes Transactions (resp. Items)) forF30Att100Li 100 Tr. et 30 It.

Comparison of the number of gradual patterns extracted on F30A100Li dafaset

% number of extracted patterns

100.00% r§

90.00%
80.00%
70.00%
60.00%

50.00% 1

40.00%
30.00%
20.00%
10.00%

0.00%

S VAT A A

VIV V N VA

Threshold

(a) exp. 1 Data set F30Att100Li.

Comparison of the number of gradual patters extracted on F30A100Li dataset

%% number of extracted paterns

50000
45000
40000
35000
30000
25000
20000
15000
10000
5000
0

W#5Grite W#MSGiite

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000
T NANRNNENARARRNARRNANENN

IO I I I

L VAR VAV N A R A

Threshold

(b) exp. 2 Data set F30Att100Li.

Figure 13. Number of gradual frequent patterns extracted for the F30Att100Li dataset.

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

Time(s)

Figure 14. Different CPU times (Tr. (Resp. It.) Denotes Transactions (resp. Items)) data set fundamental, 300 Tr. et 35 It.

CPU time comparison: a part of fundamental dataset(35 It. x 300 Tr.)

— TIMESG = TimeMSG
35
30
25
20
15
10

QA g 4 \2] A " " 'kl Nl i\ > "
069 Q'Q 0& 0,'» Q’:y (’;'» Q"» Q'> Q’} 0‘} Qr'l’ 0‘} Q'} 0‘?')

Threshold

Comparison of number of extracted patterns:
apart of fundamental dataset(35 It. x 300Tr.)

W #SGite WEMSGrite

% number of patterns
s

0.00%
d NI I TS
D(S’J Q‘Q Q@ Q'W Q'y 0'\ Q"\y

Threshold

(a) exp. 1 Data set fundmental.

Comparison of number of extracted patterns:
apart of fundamental dataset(351t. x 300Tr.)

B#SGrite WEMSGrite

1600 1600
1400 1400
1200
1000
800
600
400

IIII ”
ll.l..llIlIlllll------U

{ ST I R S R B B y
Qé) 09 ‘b'@ 0?’ B’} Q"\' 0"» ())'» Q']' Qr} Q{L Ql]' 0"‘9 br'b

% number of patterns

Threshold

(b) exp. 2 Data set fundamental.

Figure 15. Experimentation of data set fundamental on number gradual patterns extracted.

Comparison of CPU extraction times on metheogical dataset

— TIMESG = TimeMSG

25

20

15

10

Time (s)

Threshold

Figure 16. Comparison of execution times on meteorological data made up of 516 trans-actions and 26 items.

Tabueu Fotso Laurent Cabrel

Comparison of the number of gradual patterns extracted methodical dataset

100.00% ¢
9000% *
80.00% |
0% +
60.00% *

50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

% number of gradual patterns

W#NSGrite
W #SGrite

o PN PP D PP D P D

AV DR VAR VI R VIV R RV VN

Threshold

(a) exp. 1 Data set meteorological.

Comparison of the number of gradual patterns extracted methodical dataset

Z B8 8888

100
50
0

% number of gradual patterns

W#5Grite

N MSGrte

LD OB OAADNDHAD D
FEEIPIS TP PSP

Threshold

(b) exp. 2 Data set meteorological.

Figure 17. Experimentation of data set meteorological on number gradual patterns ex-tracted.

comparisan of CPU extraction times on test dataset

— TIMESG = TimeMSG

2.5

Time(s)
(==Y

A o
Y
Threshold

Figure 18. Comparison of execution times on test data made up of 100 tr. and 10 it.

Comparison of the number of gracual patterns extracted on test dataset

% number of graduals patterns

W#SGrite WEMSGrite

cEEs588288
§EZEE5EEEEE

{4 N) 1) by
0@ Q'o Q& Q"\' @' Q}'\' Q> Q) 0'} 0‘]' Qtt) be Qr'g 0&'

Threshold

(a) exp. 1 Data set test.

Comparison of the number of gradual patterns extracted on test dataset

~ES28528288

% number of graduals patterns

W#SGiite WEMSGrite

4 y Do
RN AN

(b) exp. 2

IIIIIIllll----------------0

EE2EE585888 8

Ao s B oA 5
R K R

Threshold

Data set test.

Figure 19. Number of gradual frequent patterns extracted for the test dataset.

An Efficient Hybrid by Partitioning Approach for Extracting Maximal Gradual Patterns

6 Conclusion

In this paper, we have presented an approach to improve
the performance of algorithms for discovering frequent
and maximal gradual patterns by reducing by half both the
search space, and the load of the computation of gradual
supports on the large dataset. Various experiments carried
out on various types of well-known datasets confirm the
efficiency of the proposed approach. In future work, we
will consider bigger datasets and explore the possibilities
of distributed processing.

References

[1] A.Oudni, Fouille de données par extraction de motifs graduels: con-
textualisation et enrichissement, Ph.D. thesis, Université Pierre et
Marie Curie-Paris VI, 2014.

[2] C.C. Aggarwal, Data mining: the textbook, Springer, 2015.

[3] S. Ayouni, Etude et extraction de regles graduelles floues: définition
d’algorithmes efficaces, Ph.D. thesis, Université Montpellier, 2012.

[4] B. Négrevergne, A. Termier, M. Rousset,]. Méhaut, Para miner: a
generic pattern mining algorithm for multi-core architectures, Data
Min. Knowl. Discov. 28 (2014) 593-633. d0i:10.1007/s10618-013-031
3-2.

[5] T. D. Clémentin, T. E. L. Cabrel, K. E. Belise, A novel algorithm for
extracting frequent gradual patterns, Machine Learning with Appli-
cations 5 (2021) 100068. URL: https:/ /www.sciencedirect.com/scie
nce/article/pii/52666827021000347 doi: https:/ /doi.org/10.1016/j.
mlwa.2021.100068.

[6] T. Ngo, V. Georgescu, A. Laurent, T. Libourel, G. Mercier, Mining
spatial gradual patterns: Application to measurement of potentially
avoidable hospitalizations, in: A. M. Tjoa, L. Bellatreche, S. Biffl,
J. van Leeuwen, J. Wiedermann (Eds.), SOFSEM 2018: Theory and
Practice of Computer Science, volume 10706, Springer International
Publishing, Cham, 2018, pp. 596-608. doi:10.1007 /978-3-319-73117-
9_42, series Title: Lecture Notes in Computer Science.

[7] D. Owuor, A. Laurent, J. Orero, Mining fuzzy-temporal gradual
patterns, in: 2019 IEEE International Conference on Fuzzy Systems

[8

[t

[9

—_—

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(FUZZ-IEEE), 2019, pp. 1-6. doi:10.1109/FUZZIEEE.2019.8858883,
iSSN: 1558-4739.

F. Shah, A. Castelltort, A. Laurent, Handling missing values for
mining gradual patterns from NoSQL graph databases, Future Gen-
eration Computer Systems 111 (2020) 523-538. doi:10.1016/j.future
.2019.10.004.

L. Di Jorio, Recherche de motifs graduels et application aux données
médicales, Ph.D. thesis, Montpellier 2, 2010.

A. Laurent, M.-]. Lesot, M. Rifgi, Extraction de motifs graduels par
corrélations d’ordres induits, Rencontres sur la Logique Floue et ses
Applications, LFA"2010 (2010).

L. Di-Jorio, A. Laurent, M. Teisseire, Mining frequent gradual item-
sets from large databases, in: International Symposium on Intelligent
Data Analysis, Springer, 2009, pp. 297-308.

E. Hiillermeier, Association rules for expressing gradual dependen-
cies, in: T. Elomaa, H. Mannila, H. Toivonen (Eds.), Principles of Data
Mining and Knowledge Discovery, 6th European Conference, PKDD
2002, Helsinki, Finland, August 19-23, 2002, Proceedings, volume
2431 of Lecture Notes in Computer Science, Springer, 2002, pp. 200—
211. doi:10.1007 /3-540-45681-3_17.

F. Berzal, J. C. Cubero, D. Sdnchez, M. A. V. Miranda, J. Serrano, An
alternative approach to discover gradual dependencies, Int. J. Uncer-
tain. Fuzziness Knowl. Based Syst. 15 (2007) 559-570. doi:10.1142/
5021848850700487X.

C. Marsala, A. Laurent, M.-]. Lesot, M. Rifqi, A. Castelltort, Dis-
covering ordinal attributes through gradual patterns, morphological
filters and rank discrimination measures, in: D. Ciucci, G. Pasi, B.
Vantaggi (Eds.), Scalable Uncertainty Management, Lecture Notes in
Computer Science, Springer International Publishing, Cham, 2018,
pp- 152-163. doi:10.1007 /978-3-030-00461-3_11.

Y.S. Aryadinata, Y. Lin, C. Barcellos, A. Laurent, T. Libourel, Mining
epidemiological dengue fever data from brazil: A gradual pattern
based geographical information system, in: A. Laurent, O. Strauss,
B. Bouchon-Meunier, R. R. Yager (Eds.), Information Processing and
Management of Uncertainty in Knowledge-Based Systems, Commu-
nications in Computer and Information Science, Springer Interna-
tional Publishing, Cham, 2014, pp. 414-423. doi:10.1007/978-3-319-
08855-6_42.

T. Djamégni Clémentin, T. Fotso Laurent Cabrel, K. E. Belise, Un
nouvel algorithme d’extraction des motifs graduels appelé Sgrite,
in: CARI 2020 - Colloque Africain sur la Recherche en Informa-
tique et en Mathémathiques Appliquées, Thies, Senegal, 2020. URL:
https:/ /hal.archives-ouvertes.fr/hal-02925778.

10.1007/s10618-013-0313-2
10.1007/s10618-013-0313-2
https://www.sciencedirect.com/science/article/pii/S2666827021000347
https://www.sciencedirect.com/science/article/pii/S2666827021000347
https://doi.org/10.1016/j.mlwa.2021.100068
https://doi.org/10.1016/j.mlwa.2021.100068
10.1007/978-3-319-73117-9_42
10.1007/978-3-319-73117-9_42
10.1109/FUZZIEEE.2019.8858883
10.1016/j.future.2019.10.004
10.1016/j.future.2019.10.004
10.1007/3-540-45681-3_17
10.1142/S021848850700487X
10.1142/S021848850700487X
10.1007/978-3-030-00461-3_11
10.1007/978-3-319-08855-6_42
10.1007/978-3-319-08855-6_42
https://hal.archives-ouvertes.fr/hal-02925778

	1 Introduction
	1.1 Objectifs

	2 Literature Review
	2.1 Definitions
	2.2 Gradual Pattern Extraction Techniques
	2.3 Presentation of SGrite Algorithm

	3 Methodology
	3.1 Hypotheses

	4 Presentation of the Hybrid Extraction Method for Maximal Gradual Patterns
	4.1 Partition Working Principle
	4.1.1 Principe

	4.2 Principle of Finding Maximum Gradual Patterns
	4.3 Presentation of the Components of the Hybrid Method
	4.3.1 Component 2: ascending the positive lattice

	5 Experimentation
	5.1 Description of the Datasets
	5.2 Evaluation of Algorithms

	6 Conclusion

