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Abstract. Sentiment Analysis typically refers to using natural language processing, text analysis, and computa-
tional linguistics to extract effect and emotion-based information from text data. Our work explores how we can
effectively use deep neural networks in transfer learning and joint dual input learning settings to effectively classify
sentiments and detect hate speech in Hindi and Bengali data. We start by training Word2Vec word embeddings for
Hindi HASOC dataset and Bengali hate speech [24] and then train LSTM and subsequently, employ parameter shar-
ing based transfer learning to Bengali sentiment classifiers by reusing and fine-tuning the trained weights of Hindi
classifiers with both classifiers being used as the baseline in our study. Finally, we use BiLSTM with self-attention
in a joint dual input learning setting where we train a single neural network on the Hindi and Bengali datasets
simultaneously using their respective embeddings.
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1 Introduction

There have been certain huge breakthroughs in the field of
Natural Language Processing paradigm with the advent of
attention mechanism and its use in transformer sequence-
sequence models [2] coupled with different transfer learn-
ing techniques have quickly become state-of-the-art in
multiple pervasive Natural Language Processing tasks
such as classification, named entity recognition etc [25, 26].
In our work we propose, a novel self-attention-based archi-
tecture for sentiment analysis and classification on Hindi
HASOC dataset [24] here we use sub-task A which deals
with whether a given tweet has hate speech or not. More-
over, this also serves as a source domain in the subse-
quent task-specific transfer learning task, where, we take
the learned knowledge from the Hindi sentiment analy-
sis domain to a similar binary Bengali sentiment analysis
task.

Given the similar nature of both Bengali and Hindi
sentiment analysis tasks (i.e., binary classification), we con-
ceptualized the problem as joint dual input learning setting

on top of the work of Zhouhan Lin et al. [27] where
they suggested how we can integrate self-attention with
BiLSTMs and have a hidden representation containing dif-
ferent aspects for each sequence which results in sentence
embeddings whilst performing sentiment analysis and text
classification more broadly. One significant beneficial side
effect of using such an approach is that the attention attri-
butions can easily be visualized which implies we can
see what portions of the sequence attention mechanism
have put more impetus on via its generated summation
weights, this visualization technique played a pivotal role
in selecting the number of attention hops r also referred to
as how many attention vectors of summation weights for
each sequence in our study. Moreover, we employed this
approach in a joint dual input learning setting where we
have a single neural network that is trained on Hindi and
Bengali data simultaneously.

Our proposed approach which is a variant of the multi-
task learning offers an alternative framework for training
text classification based neural networks on low resource
corpora. Also, since we train a single joint network on mul-
tiple tasks simultaneously, it essentially allows for better
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generalization and task specific weight-sharing which can
be a reasonable alternative for pre-training based transfer
learning approaches.

2 Experimental Setting

2.1 Word Embeddings

Starting with the Hindi dataset, we prepared the train-
ing dataset in which employed sub-sampling technique in
which we first computed the probability of keeping the
word using the following formula:

Pkeep(wi) =

(√
z(wi)

0.000001
+ 1

)
· 0.000001

z(wi)

Where z(wi) is the relative frequency of the word in the
corpus. Hence we used Pkeep(wi) for each context word
while sampling context words for a given word and ran-
domly dropped frequent context words by comparing
them against a random threshold sampled each time from
a uniform distribution, since if we kept all the frequent
words in our context for training data, we may not get
the rich semantic relationship between the domain-specific
words since frequent words like “the”, “me” etc don’t nec-
essarily carry much semantic meaning in a given sequence.
Hence dropping randomly dropping them made more
sense as compared to keeping or dropping all of them.
Also, another important design decision that we made here
was to curate the train set for Word2Vec only once before
training the model as opposed to creating a different one
for each epoch as we were randomly sub-sampling context
words because the earlier mentioned approach gives faster
execution time for training the model while the model
also converged well to a relatively low train loss value as
well. Furthermore, for choosing hyper-parameters we per-
formed the following analysis.

As it is apparent from the above visualization WordVec
models with smaller context windows converged faster
and had better train loss at the end of the training process.
However, in order to retain some context-based informa-
tion we selected the window size 2 as it has contextual
information as well the model had better train loss.

After testing different values for hyper-parameters with
different combinations, this was observed that for the
better performance of the model, they should be set to
Epochs = 500, Window Size = 2, Embedded Size = 300,
and Learning Rate = 0.05 in the case of our study.

Also, we have set Cross Entropy Loss as the crite-
rion used for adjusting the weights during the training
phase. When softmax converts logits into probabilities
then, Cross-Entropy takes those output probabilities (p)
and measures the distance from the truth values to esti-
mate the loss. Cross entropy loss inherently combines log

Figure 1. Train loss convergence for different values of window
size with fixed embedded size = 300 Hindi Dataset.

Table 1. Different combinations of hyperparameters from Hindi
Dataset.

Embedded Size Learning Rate Window Size Min Loss Score

300

0.05

1 0.841
2 1.559
3 1.942
4 2.151
5 2.321
10 2.792

0.01
1 1.298
2 3.295
10 2.747

0.1
1 1.311
2 1.557
10 3.551

softmax and negative log-likelihood loss so we didn’t
apply log softmax on the output of our Word2Vec model.

For optimization, we have selected Adam (Adaptive
Moment Estimation algorithm) [28] which is an optimiza-
tion technique that, at present, is very much recommended
for its computational efficiency, low memory require-
ment, invariant to diagonal rescale of the gradients, and
extremely better results for problems that are large in terms
of data/parameters or for problems with sparse gradients.
Adam provides us with the combination of best properties
from both AdaGrad and RMSProp and is often used as an
alternative for SGD + Nesterov Momentum as proposed by
adam [28].

2.2 Baseline Models

For the choice of baseline, we reproduced the work by
Jenq-Haur Wang et al. [29] which primarily focuses on per-
forming sentiment classification on short social media texts
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using long short-term memory neural networks using dis-
tributed representations of Word2Vec learned using Skip-
gram approach. We chose to reproduce their work for
our baseline as they also were using Word2Vec Skip-gram
based distributed representation of words and also since
our datasets were also sourced from social media. More-
over, the neural network LSTM is an upgraded variant of
the RNN model, that serves as the remedy to some extent
of the problems that require learning long-term tempo-
ral dependencies; due to vanishing gradients, since LSTM
uses a gate mechanism and memory cell to control the
memorizing process.

2.2.1 Hindi neural sentiment classifier baseline

We then implemented the architecture for the LSTM classi-
fier which used pre-trained 300-dimensional word embed-
dings obtained as described in Section 2.1. We used the
Adam optimizer with the initial learning rate of 10−4

which helped the train and validation loss to converge
at a relatively fast rate, the optimizer didn’t optimize the
weights of the embedding layer via gradient optimization
since they were pre-trained already. Moreover, we chose
the binary cross-entropy loss function as we are doing
binary classification. In model architecture, we used 8 lay-
ers of LSTMs with each having a hidden dimension of
64 followed by a dropout layer with a dropout probabil-
ity of 0.5 to counterbalance over fitting and finally fully
connected output layer wrapped by a sigmoid activation
function since our target is binary and sigmoid is the
ideal choice for binary classification given its mathemat-
ical properties. We kept a batch size of 32 and trained the
model for 30 epochs while monitoring its accuracy and loss
on the validation set. The choice of hyper-parameters was
made after trying different combinations and we chose the
best set of hyper-parameters while monitoring the valida-
tion set accuracy.

2.2.2 Bengali neural transfer learning based
sentiment classifier baseline

Similarly to the Hindi sentiment classification pipeline, we
first obtained the word embeddings for Bengali data using
the Word2Vec skip-gram approach, the same set of hyper-
parameters that we chose for the Hindi dataset, worked
fine here well, so we didn’t tune the hyper-parameters
here, as the model’s train loss converged to the similar
value we had for the Hindi dataset. Subsequently, we then
same the architecture for LSTM based classifier architec-
ture as explained in 2.2.1. Since our goal here was to
perform transfer learning and re-use and fine-tune the
learned weights of the Hindi classifier. We replaced the
Hindi embeddings layer with a Bengali 300 dimensional
embedding layer and also didn’t optimize its weights dur-
ing training. Then loaded the weights from the Hindi
classifier for LSTM layers and fully connected layer to

apply parameter sharing-based task-specific transfer learn-
ing. Additionally, we trained the Bengali classifier for 30
epochs with a batch size of 32 and used the Adam opti-
mizer with an initial learning rate of 10−4 while using
the binary cross-entropy function for computing loss on
the training and validation set. The choice of batch size
hyper-parameter was made after trying different values
and we chose the best hyper-parameter while monitor-
ing the validation set accuracy. After training the classifier
using the pre-trained weights from the Hindi classifier,
we got better performance results than the Hindi baseline,
this implies task-based transfer learning actually boosted
the performance of the Bengali classifier and it performed
better.

3 Proposed Method

The LSTM based classifier coupled with transfer learning
in the Bengali domain does a fairly good job of providing
the baselines in our study. However, one main prominent
shortcoming of Recurrent Neural Network based architec-
tures is they fall short to capture the dependencies between
words that are too distant from each other. LSTM’s forget
gate enables it to retain information about the histori-
cal words in the sequence however, it doesn’t completely
resolve the RNN based networks’ vanishing gradients
problem. We wanted to investigate whether using self-
attention with LSTMs would improve our model’s per-
formance. Also, we propose the joint dual input learning
setting where both Hindi and Bengali classification tasks
can benefit from each other rather than the transfer learn-
ing setting where only the target task takes the advantage
of pre-training.

3.1 Hindi & Bengali Self Attention Based
Joint Dual Input Learning BiLSTM
Classifier

Instead of training two separate neural networks for Hindi
& Bengali, here we simultaneously trained a joint neural
network with the same architecture on Hindi and Ben-
gali data in parallel, and optimized its weights using the
combined binary cross-entropy loss over Hindi & Bengali
datasets respectively, we also added the Hindi and Bengali
batches’ attention loss to the joint loss in order to avoid
overfitting, which we would present in detail in the subse-
quent sections. Here we switched between the embedding
layers based on the language of the batch data. Following
is the block architecture we propose.

One major benefit of using such technique is that it
increases the model capability of generalization since the
size of the training data set roughly doubles given if both
languages have an equal number of training examples.
Consequently, it reduces the risk of over-fitting.
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Figure 2. Hindi Bengali Joint Dual Input Learning Architecture.

We propose an extension of the work of [27] where they
proposed the method of “A Structured Self-attentive Sen-
tence Embedding” on the Hindi dataset. The key idea
of that work was to propose document level embeddings
by connecting the self-attention mechanism right after a
Bi-directional LSTM, which leverages information of both
past and future in the sequence as opposed to unidirec-
tional LSTM which only relies on past information in the
sequence. The self-attention mechanism results in a matrix
of attention vectors which are then used to produce sen-
tence embeddings, each of them equivalent to the length
of the sequence and the number of vectors depend on
the value of r which is the output dimension of the self-
attention mechanism, where each vector is representing
how attention mechanism is putting more relative weight
on different tokens in the sequence. Following are the key
takeaways on how self-attentive document embeddings
are produced:

We start with a input text T of (n, d) dimension, where
n are the number of tokens, each token is represented by
its embedding e in the sequence and d is the embedding
dimension.

Thindi = [e1, e2, e3, . . . , en]

Tbengali = [e1, e2, e3, . . . , en]

Based on the source language of the input text the corre-
sponding embedding lookup is performed.

Token embeddings are then fed into the BiLSTM, which
individually processes each token from left to right and left
to the right direction, each BiLSTM cell/layer producing
two vectors of hidden states equivalent to the length of the
sequence.

[[
−→
h1 ,
−→
h2 , . . . ,

−→
hn ], [

←−
h1 ,
←−
h2 , . . . ,

←−
hn ]]

= BiLSTM([e1, e2, . . . , en]; θ)

Here H is the concatenated form of bi-directional hidden
states. If there are l LSTM layers/cells then the dimension
of H is going to be (n, 2l).

H = [[
−→
h1 ,
−→
h2 , . . . ,

−→
hn ], [

←−
h1 ,
←−
h2 , . . . ,

←−
hn ]]

For self-attention, Zhouhan Lin et al. [27] proposed
having two weight matrices, namely Ws1 with dimen-
sion (da, 2l) and Ws2 with dimension (r, da), here da is
the hidden dimension of self-attention mechanism and as
described earlier r is the number of attention vectors for
given text input and then we apply following set of opera-
tions to produce the attention matrix for input text T.

Ha = tanh(Ws1 HT)

Here Ha has dimensions (da, n)

A = so f tmax(Ws2 Ha)

Finally, we compute sentence/document level embeddings

M = AH

A has dimensions (r, n) and M has dimensions (r, 2l) also,
earlier the softmax applied along the second dimension of
A normalizes attention weights so they sum up 1 for each
attention vector of length n.

Zhouhan Lin et al. [27] also proposed penalization term
in place of regularization to counterbalance redundancy in
embedding matrix M when attention mechanism results in
the same summation weights for all r hops, additionally,
We initially started by setting this penalization term to 0.0
however, as self-attention generally works well for finding
long term dependencies the neural network started to over-
fit after few epochs of training on train data. We started
with the same hyper-parameters setting of self-attention
block as described by Zhouhan Lin et al. [27] while setting
r = 30 however, we started with no penalization to start
with and found the best values for them while monitoring
the validation set accuracy which is a hidden dimension of
300 for self-attention, with 8 layers of BiLSTM with a hid-
den dimension of 32 and also, the output of self-attention
mechanism (sentence embeddings M) goes into a fully con-
nected layer with its hidden dimension set to 2000, finally
we feed the fully connected layer’s results to output layer
wrapped with sigmoid activation. The choice of the loss
function, learning rate, and optimizer remain unchanged
from the baseline, the number of epochs are 20 here. After
training the model with hyperparameters suggested in the
above text, we observed the model started to overfit on
train data after a few epochs and almost achieved 99% train
accuracy and loss less than 0.5 average epoch train loss, in
order to add the remedy for this we visually inspected the
few of the examples from the test set in attention matrix
with confidence > 0.90 and observed for longer sequences
the attention mechanism worked as expected, however, as
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the sequence length decreased the attention mechanism
started producing roughly equal summation weights on all
r hops which intuitively makes sense in short sequences
all tokens would carry more semantic information, how-
ever, this result in redundancy in attention matrix A and
in embedding matrix M. Below we present some of the
examples from the Hindi test set, also since showing all the
vectors would make it redundant so we only present 5 vec-
tors for a given sequence even though we had r set to 30
which implies we had 30 vectors for each sequence.

Figure 3. Attention vectors for a relatively longer Hindi sequence.

Figure 4. Attention vectors for a relatively medium Hindi
sequence.

Figure 5. Attention vectors for a short Hindi sequence.

Figure 6. Attention vectors for a short Bengali sequence.

Figure 7. Attention vectors for a short Bengali sequence.

Also, we performed the same analysis as we performed
for Bengali data. Following we would also show few simi-
lar examples as we showed for Hindi sequences.

In order to counterbalance this redundancy, we started
increasing the value of the penalization coefficient of the
attention mechanism in order to reduce the redundancy
among the attention matrix and found penalization coef-
ficient of 0.6 produced the best validation set accuracy,
similarly, the other form of diagnosis we performed was
to actually reduce the number of attention hops, i.e., vary-
ing the hyper-parameter r and observed network with r =
20 had better performance on validation, alongside setting
the hidden size of attention mechanism to 150 set as com-
pared to r = 30 and hidden size =200 as suggested in the
original work. Also, in order to avoid any over-fitting dur-
ing the BiLSTM block, we used dropout in BiLSTM layers
with a value of p = 0.5.

4 Results

LSTM − Bengali + Pret in Table 2 refers to the model
which shares task-specific pre-trained weights from

Table 2. Results of evaluating the binary neural Hindi and Bengali
sentiment classifiers on their respective test sets.

Model Accuracy Precision Recall F-1 Score
LSTM-Hindi 0.74 0.74 0.74 0.74
LSTM-Bengali + Pret 0.77 0.77 0.77 0.77
SA + JDIL (Hindi) 0.76 0.76 0.76 0.76
SA + JDIL (Bengali) 0.78 0.78 0.78 0.78
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LSTM− Hindi classifier. SA + JDIL is our method which
uses self-attention with joint dual input learning to train a
joint neural network. Results in Table 2 empirically show
that joint-learning can benefit both the pre-training task
performance as well the downstream task due to the joint
training procedure. Moreover, since the pre-training model
LSTM − Hindi has to perform training starting with ran-
domly initialized weights, it is not possible in that setting
for the pre-training network to benefit from downstream
task, however, our proposed approach make this possible
which results in meaningful performance gain for the pre-
training task on the performance metrics.

5 Conclusion

In our study we investigate whether self-attention can
enhance significantly the performance over uni-directional
LSTM in the binary classification task setting, moreover,
we also investigated when the tasks are the same in
our case binary classification in Hindi and Bengali lan-
guage, whether how do transfer learning and joint dual
input learning setting perform. Firstly we found when the
lengths of sequences are not that long LSTMs can perform
almost as well as using self-attention since there are no very
distant dependencies in sequences in most of the cases.
Secondly, we observed that transfer learning in case sim-
ilar or same tasks can be a beneficial way of increasing the
performance of the target task which in our case was Ben-
gali binary classification. However, by introducing the joint
learning setting where we trained a single network for both
tasks the Hindi classification task that was the source task
in the transfer learning setting, also got benefited in the
joint learning setting as its performance improved. More-
over, such architecture provides an implicit mechanism to
avoid overfitting as it roughly doubled the dataset size
when we trained a single network.
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